Product details:

ISBN13:9783031252167
ISBN10:30312521611
Binding:Paperback
No. of pages:196 pages
Size:235x155 mm
Weight:332 g
Language:English
Illustrations: 6 Illustrations, black & white; 54 Illustrations, color
681
Category:

A Novel Approach to Relativistic Dynamics

Integrating Gravity, Electromagnetism and Optics
 
Edition number: 1st ed. 2023
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 160.49
Estimated price in HUF:
66 226 HUF (63 072 HUF + 5% VAT)
Why estimated?
 
Your price:

52 980 (50 458 HUF + 5% VAT )
discount is: 20% (approx 13 245 HUF off)
Discount is valid until: 30 June 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

This self-contained monograph provides a mathematically simple and physically meaningful model which unifies gravity, electromagnetism, optics and even some quantum behavior. The simplicity of the model is achieved by working in the frame of an inertial observer and by using a physically meaningful least action principle.

The authors introduce an extension of the Principle of Inertia. This gives rise to a simple, physically meaningful action function. Visualizations of the geometryare obtained by plotting the action function. These visualizations may be used to compare the geometries of different types of fields. Moreover, a new understanding of the energy-momentum of a field emerges.

The relativistic dynamics derived here properly describes motion of massive and massless objects under the influence of a gravitational and/or an electromagnetic field, and under the influence of isotropic media.

The reader will learn how to compute theprecession of Mercury, the deflection of light, and the Shapiro time delay. Also covered is the relativistic motion of binary stars, including the generation of gravitational waves, a derivation of Snell's Law and a relativistic description of spin. We derive a complex-valued prepotential of an electromagnetic field. The prepotential is similar to the wave function in quantum mechanics. 

The mathematics is accessible to students after standard courses in multivariable calculus and linear algebra. For those unfamiliar with tensors and the calculus of variations, these topics are developed rigorously in the opening chapters. The unifying model presented here should prove useful to upper undergraduate and graduate students, as well as to seasoned researchers.

Long description:

This self-contained monograph provides a mathematically simple and physically meaningful model which unifies gravity, electromagnetism, optics and even some quantum behavior. The simplicity of the model is achieved by working in the frame of an inertial observer and by using a physically meaningful least action principle.

The authors introduce an extension of the Principle of Inertia. This gives rise to a simple, physically meaningful action function. Visualizations of the geometryare obtained by plotting the action function. These visualizations may be used to compare the geometries of different types of fields. Moreover, a new understanding of the energy-momentum of a field emerges.

The relativistic dynamics derived here properly describes motion of massive and massless objects under the influence of a gravitational and/or an electromagnetic field, and under the influence of isotropic media.

The reader will learn how to compute theprecession of Mercury, the deflection of light, and the Shapiro time delay. Also covered is the relativistic motion of binary stars, including the generation of gravitational waves, a derivation of Snell's Law and a relativistic description of spin. We derive a complex-valued prepotential of an electromagnetic field. The prepotential is similar to the wave function in quantum mechanics. 

The mathematics is accessible to students after standard courses in multivariable calculus and linear algebra. For those unfamiliar with tensors and the calculus of variations, these topics are developed rigorously in the opening chapters. The unifying model presented here should prove useful to upper undergraduate and graduate students, as well as to seasoned researchers.

Table of Contents:

1. Introduction.- 2. Classical Dynamics.- 3. The Lorentz Transformations and Minkowski Space.- 4. The Geometric Model of Relativistic Dynamics.- 5. The Electromagnetic Field in Vacuum.- 6. The Gravitational Field.- 7. Motion of Light and Charges in Isotropic Media .- 8. Spin and Complexified Minkowski Spacetime.- 9. The Prepotential.