• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Modeling Discrete Time-to-Event Data

    Modeling Discrete Time-to-Event Data by Tutz, Gerhard; Schmid, Matthias;

    Sorozatcím: Springer Series in Statistics;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 106.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        45 385 Ft (43 223 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 9 077 Ft off)
      • Discounted price 36 307 Ft (34 578 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2016
    • Kiadó Springer
    • Megjelenés dátuma 2016. június 22.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783319281568
    • Kötéstípus Keménykötés
    • Terjedelem247 oldal
    • Méret 235x155 mm
    • Súly 5148 g
    • Nyelv angol
    • Illusztrációk 55 Illustrations, black & white; 3 Illustrations, color
    • 0

    Kategóriák

    Rövid leírás:

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book. 

    Több

    Hosszú leírás:

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book. 



    ?Modeling Discrete Time-to-Event Data provides an excellent overview of a field that is underrepresented in the literature. At what it aims to do, striking a balance between theory and practice, this book does a great job. Its readers will understand not only what to do, but also how to do it. I believe that this book can easily find a place on the shelf of statisticians who have an interest in survival analysis.? (Theodor Adrian Balan, Biometrical Journal, Vol. 61 (1), January, 2019)?

    Több

    Tartalomjegyzék:

    Introduction.- The Life Table.- Basic Regression Models.- Evaluation and Model Choice.- Nonparametric Modelling and Smooth Effects.- Tree-Based Approaches.- High-Dimensional Models - Structuring and Selection of Predictors.- Competing Risks Models.- Multiple-Spell Analysis.- Frailty Models and Heterogeneity.- Multiple-Spell Analysis.- List of Examples.- Bibliography.- Subject Index.- Author Index.

    Több
    Mostanában megtekintett
    previous
    Modeling Discrete Time-to-Event Data

    Modeling Discrete Time-to-Event Data

    Tutz, Gerhard; Schmid, Matthias;

    45 385 Ft

    next