
Tidy Modeling with R
A Framework for Modeling in the Tidyverse
- Publisher's listprice GBP 52.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 10% (cc. 2 682 Ft off)
- Discounted price 24 136 Ft (22 987 Ft + 5% VAT)
26 818 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1
- Publisher O'Reilly
- Date of Publication 26 July 2022
- Number of Volumes Print PDF
- ISBN 9781492096481
- Binding Paperback
- No. of pages300 pages
- Size 237x198x20 mm
- Weight 660 g
- Language English 712
Categories
Long description:
Get going with tidymodels, a collection of R packages for modeling and machine learning. Whether you're just starting out or have years of experience with modeling, this practical introduction shows data analysts, business analysts, and data scientists how the tidymodels framework offers a consistent, flexible approach for your work.
RStudio engineers Max Kuhn and Julia Silge demonstrate ways to create models by focusing on an R dialect called the tidyverse. Software that adopts tidyverse principles shares both a high-level design philosophy and low-level grammar and data structures, so learning one piece of the ecosystem makes it easier to learn the next. You'll understand why the tidymodels framework has been built to be used by a broad range of people.
With this book, you will:
- Learn the steps necessary to build a model from beginning to end
- Understand how to use different modeling and feature engineering approaches fluently
- Examine the options for avoiding common pitfalls of modeling, such as overfitting
- Learn practical methods to prepare your data for modeling
- Tune models for optimal performance
- Use good statistical practices to compare, evaluate, and choose among models