
The Relativistic Boltzmann Equation: Theory and Applications
Series: Progress in Mathematical Physics; 22;
- Publisher's listprice EUR 192.59
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 16 339 Ft off)
- Discounted price 65 357 Ft (62 245 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
81 696 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2002
- Publisher Birkhäuser
- Date of Publication 1 February 2002
- Number of Volumes 1 pieces, Book
- ISBN 9783764366933
- Binding Hardback
- No. of pages384 pages
- Size 235x155 mm
- Weight 1620 g
- Language English
- Illustrations X, 384 p. Illustrations, black & white 0
Categories
Long description:
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
MoreTable of Contents:
1 Special Relativity.- 1.1 Introduction.- 1.2 Lorentz transformations.- 1.3 Tensors in Minkowski spaces.- 1.4 Relativistic mechanics.- 1.5 Electrodynamics in free space.- 2 Relativistic Boltzmann Equation.- 2.1 Single non-degenerate gas.- 2.2 Single degenerate gas.- 2.3 General equation of transfer.- 2.4 Summational invariants.- 2.5 Macroscopic description.- 2.6 Local Lorentz rest frame.- 2.7 Equilibrium distribution function.- 2.8 Trend to equilibrium. H-theorem.- 2.9 The projector ???.- 2.10 Equilibrium states.- 3 Fields in Equilibrium.- 3.1 The general case.- 3.2 Non-degenerate gas.- 3.3 Degenerate relativistic Fermi gas.- 3.4 Degenerate relativistic Bose gas.- 4 Thermomechanics of Relativistic Fluids.- 4.1 Introduction.- 4.2 Thermodynamics of perfect fluids.- 4.3 Eckart decomposition.- 4.4 Landau and Lifshitz decomposition.- 4.5 Thermodynamics of a single fluid.- 5 Chapman?Enskog Method.- 5.1 Introduction.- 5.2 Simplified version.- 5.3 The integrals Il, I2 and I3.- 5.4 Transport coefficients.- 5.5 Formal version.- 5.6 Appendix.- 6 Method of Moments.- 6.1 Introduction.- 6.2 Grad distribution function.- 6.3 Constitutive equations for Taßry and Paß.- 6.4 Linearized field equations.- 6.5 Five-field theory.- 6.6 Maxwellian particles.- 6.7 Combined method of Chapman?Enskog and Grad.- 7 Chemically Reacting Gas Mixtures.- 7.1 Introduction.- 7.2 Boltzmann and transfer equations.- 7.3 Maxwell?Jüttner distribution function.- 7.4 Thermodynamics of mixtures.- 7.5 Transport coefficients.- 7.6 Onsager reciprocity relations.- 8 Model Equations.- 8.1 Introduction.- 8.2 The characteristic time.- 8.3 Single non-degenerate gas.- 8.4 Single degenerate gas.- 8.5 Relativistic ionized gases.- 8.6 Appendix.- 9 Wave Phenomena in a Relativistic Gas.- 9.1 Introduction.- 9.2Propagation of discontinuities.- 9.3 Small oscillations.- 9.4 Shock waves.- 10 Tensor Calculus in General Coordinates.- 10.1 Introduction.- 10.2 Tensor components in general coordinates.- 10.3 Affine connection.- 10.4 Covariant differentiation.- 10.5 Spatial metric tensor.- 10.6 Special relativity in general coordinates.- 11 Riemann Spaces and General Relativity.- 11.1 Introduction.- 11.2 Tensors in Riemannian spaces.- 11.3 Curvature tensor.- 11.4 Physical principles of general relativity.- 11.5 Mechanics in gravitational fields.- 11.6 Electrodynamics in gravitational fields.- 11.7 Perfect fluids.- 11.8 Einstein?s field equations.- 11.9 Solution for weak fields.- 11.10 Exact solutions of Einstein?s field equations.- 11.11 Robertson?Walker metric.- 12 Boltzmann Equation in Gravitational Fields.- 12.1 Introduction.- 12.2 Transformation of volume elements.- 12.3 Boltzmann equation.- 12.4 Transfer equation.- 12.5 Equilibrium states.- 12.6 Boltzmann equation in a spherically symmetric gravitational field.- 12.7 Dynamic pressure in a homogeneous and isotropic universe.- 13 The Vlasov Equation and Related Systems.- 13.1 Introduction.- 13.2 The Vlasov?Maxwell system.- 13.3 The Vlasov?Einstein system.- 13.4 Steady Vlasov?Einstein system in case of spherical symmetry.- 13.5 The threshold of black hole formation.- 13.6 Cosmology with the Vlasov?Einstein system.- Physical Constants.- Modified Bessel Function.
More