
The Effect
An Introduction to Research Design and Causality
- Publisher's listprice GBP 89.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 9 109 Ft off)
- Discounted price 36 435 Ft (34 700 Ft + 5% VAT)
45 543 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1
- Publisher Chapman and Hall
- Date of Publication 21 December 2021
- ISBN 9781032127453
- Binding Hardback
- No. of pages646 pages
- Size 254x178 mm
- Weight 250 g
- Language English
- Illustrations 162 Illustrations, black & white; 22 Halftones, black & white; 140 Line drawings, black & white; 36 Tables, black & white 364
Categories
Short description:
The Effect: An Introduction to Research Design and Causality is about research design, specifically concerning research that uses observational data to make a causal inference. It is separated into two halves, each with different approaches to that subject.
MoreLong description:
The Effect: An Introduction to Research Design and Causality is about research design, specifically concerning research that uses observational data to make a causal inference. It is separated into two halves, each with different approaches to that subject. The first half goes through the concepts of causality, with very little in the way of estimation. It introduces the concept of identification thoroughly and clearly and discusses it as a process of trying to isolate variation that has a causal interpretation. Subjects include heavy emphasis on data-generating processes and causal diagrams.
Concepts are demonstrated with a heavy emphasis on graphical intuition and the question of what we do to data. When we ?add a control variable? what does that actually do?
Key Features:
- ? Extensive code examples in R, Stata, and Python
- ? Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions
- ? An easy-to-read conversational tone
- ? Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
"Nick has created a classic. Can?t say it any other way. It?s the replacement for Mastering Metrics that we all wanted. This is the book that will empower students in both understanding what econometrics is or can be, and how to get from A to B with programming practice. He has created numerous on-ramps into econometrics that can help hit many different types of students at where they are, rather than teaching to students who most resemble the kind of student that our econometrics and statistics professors were when they were the students? age. I mean that in the most flattering way possible.
I think the book is phenomenal and will sell well. It?s basically an ambitious book that seeks to take students with zero knowledge of causal inference, but also zero knowledge of programming languages, and possibly even minimal knowledge of statistics, and over 600 pages with excellent writing, extensive programming examples across multiple languages, and causal graphs cover just about everything remotely conceivable to make a student conversant and maybe even competent. Except for my book, there?s nothing like what Nick has done on the market ?It will be a very popular companion textbook on many econometrics courses, and may even help facilitate the creation of more causal inference courses are all levels. I think Nick has absolutely nailed it."
- Scott Cunningham, Baylor University (author of Causal Inference: A Mix Tape)
MoreTable of Contents:
Chapter 1 Designing Research Chapter 2 Research Questions Chapter 3 Describing Variables Chapter 4 Describing Relationships Chapter 5 Identification Chapter 6 Causal Diagrams Chapter 7 Drawing Causal Diagrams Chapter 8 Causal Paths and Closing Back Doors Chapter 9 Finding Front Doors Chapter 10 Treatment Effects Chapter 11 Causality with Less Modeling Chapter 12 Opening the Toolbox Chapter 13 Regression Chapter 14 Matching Chapter 15 Simulation Chapter 16 Fixed Effects Chapter 17 Event Studies Chapter 18 Difference-in-Differences Chapter 19 Instrumental Variables Chapter 20 Regression Discontinuity Chapter 21 A Gallery of Rogues: Other Methods Chapter 22 Under the Rug
More
The Effect: An Introduction to Research Design and Causality
Subcribe now and receive a favourable price.
Subscribe
45 543 HUF