• Contact

  • Newsletter

  • About us

  • Delivery options

  • News

  • 0
    Solid State Chemistry: An Introduction

    Solid State Chemistry by Moore, Elaine A.; Readman, Jennifer;

    An Introduction

      • GET 10% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice GBP 48.99
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        24 793 Ft (23 613 Ft + 5% VAT)
      • Discount 10% (cc. 2 479 Ft off)
      • Discounted price 22 314 Ft (21 252 Ft + 5% VAT)

    24 793 Ft

    db

    Availability

    Not yet published.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 6
    • Publisher CRC Press
    • Date of Publication 22 May 2025

    • ISBN 9781032728872
    • Binding Paperback
    • No. of pages412 pages
    • Size 254x178 mm
    • Weight 453 g
    • Language English
    • Illustrations 120 Illustrations, black & white; 220 Illustrations, color; 9 Halftones, black & white; 22 Halftones, color; 111 Line drawings, black & white; 198 Line drawings, color; 57 Tables, black & white; 1 Tables, color
    • 700

    Categories

    Short description:

    Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials, porous materials for the capture of carbon dioxide and other pollutants.

    More

    Long description:

    Solid State Chemistry: An Introduction 6th Edition is a fully revised edition of one of our most successful textbooks with at least 20% new information and new images of crystal structures.


    Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials and porous materials for the capture of carbon dioxide and other pollutants.


    This edition aims, as previously, not only to teach the basic science that underpins the subject but also to direct the reader to the most modern techniques and to expanding and new areas of research. The user-friendly style takes a largely non-mathematical approach and gives practical examples of applications of solid-state materials and concepts.


    The chapter on sustainability written by an expert in the field has been updated, and examples of the relevance of solid-state chemistry to sustainability are used throughout. The chapter on batteries has been extended to include fuel cells.


    Other new topics in this edition include X-ray-free electron laser crystallography and thermal properties of materials.


    A companion website offering accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more has been provided for this edition.

    More

    Table of Contents:

    Chapter 1 ? An Introduction to Crystal Structures


    Jennifer E. Readman and Lesley E. Smart


    1.1 Introduction


    1.2 Close packing


    1.3 Body-centred and Primitive Structures


    1.4 Lattices and Unit Cells


    1.4.1 Lattices


    1.4.2 One- and Two- Dimensional Unit Cells


    1.4.3 Three-Dimensional Lattices and Their Unit Cells


    1.5 Crystalline solids


    1.5.1 Unit cell stoichiometry and Fractional Coordinates


    1.5.2 Ionic Solids with Formula MX


    1.5.2.1 Caesium Chloride


    1.5.2.2 Sodium Chloride


    1.5.2.3 Zinc Blende & Wurtzite


    1.5.2.4 Nickel Arsenide


    1.5.3 Solids with General Formula MX2


    1.5.3.1 Fluorite and Anti-Fluorite


    1.5.3.2 Cadmium Chloride and Cadmium Iodide


    1.5.3.3 Rutile


    1.5.3.4 -Cristobalite


    1.5.4 Other Important Crystal Structures


    1.5.4.1 Rhenium trioxide


    1.5.4.2 Perovskite


    1.5.4.3 Spinel and Inverse Spinel


    1.5.5 Miscellaneous Oxides


    1.6 Ionic Radii and the Radius Ratio Rule


    1.7 Extended Covalent Arrays


    1.8 Molecular Structures


    1.9 Lattice Energy


    1.9.1 Born-Haber Cycle


    1.9.2 Calculating Lattice Enthalpies


    1.9.3 Calculations Using Thermodynamic Cycles and Lattice Energies


    1.10 Symmetry


    1.10.1 Symmetry Notation


    1.10.2 Axes of Symmetry


    1.10.3 Planes of Symmetry


    1.10.4 Inversion


    1.10.5 Inversion Axes, Improper Symmetry Axes, and the Identity Element


    1.10.6 Operations


    1.10.7 Symmetry in Crystals


    1.10.8 Translational Symmetry Elements


    1.10.9 Space groups


    1.11 Miller Indices and Interplanar spacing


    1.12 Quasicrystals


    Summary.


    Questions


    Chapter 2 Scattering Techniques for Characterising Solids


    Jennifer E. Readman


    2.1 Introduction


    2.2 X-ray Diffraction


    2.2.1 The Generation of X-rays         


    2.2.2 Scattering of X-rays & Bragg?s Law


    2.2.3 The Diffraction Experiment


    2.2.4 The Powder Diffraction Pattern


    2.2.5 The Intensity of Diffracted Peaks


    2.2.6 The Width of Diffracted Peaks


    2.2.7 Rietveld Refinement


    2.2.8 Structure & Single-Crystal Diffraction solution


    2.3 Synchrotron Radiation


    2.3.1 Introduction


    2.3.2 Generation of Synchrotron X-rays


    2.3.3 Bending Magnets and Insertion Devices


    2.4 Neutron Diffraction


    2.4.1 Background & Production of Neutrons


    2.4.2 Neutron scattering


    2.4.3 Experimental Neutron Diffraction


    2.4.4 Magnetic Scattering


    2.5 Pair Distribution Function Analysis (PDF)


    2.5.1 Introduction


    2.5.2 Theoretical background


    2.5.3 The Total Scattering Experiment


    2.6 In-situ Experiments


    2.6.1 Variable Temperature


    2.6.2 Variable Pressure


    2.7 Free Electron Lasers (XFELs)


     2.7.1 Introduction


    2.7.2 How XFEL X-rays Are Generated


    2.7.3 Typical XFEL Experiments


    Appendix Allowed reflections for simple cubic cells


    Questions


     


    Chapter 3 ? Non-Scattering Characterisation Techniques


    Jennifer E. Readman


    3.1 Introduction


    3.2 Electron Microscopy


    3.2.1 Scanning Electron Microscopy (SEM}


    3.2.2 Transmission Electron Microscopy (TEM)


    3.2.3 Electron Diffraction (ED)


    3.2.4 Scanning Transmission Electron Microscopy (STEM)


    3.2.5 Energy Dispersive X-Ray Analysis (EDS / EDX)


    3.2.6 Electron Energy Loss Spectroscopy (EELS)


    3.2.7 Scanning Tunnelling Microscopy (STM) & Atomic Force Microscopy (AFM)


    3.3 X-ray Spectroscopy


    3.3.1 Introduction


    3.3.2 X-ray Fluorescence Spectroscopy (XRF)


    3.3.3 X-ray Absorption Spectroscopy


    3.3.4 EXAFS


    3.3.5 XANES


    3.3.6 Experimental XAS


    3.3.7 X-ray Photoelectron Spectroscopy (XPS)


    3.4 Solid State NMR


    3.4.1 Introduction


    3.4.2 29-Si MAS NMR


    3.4.3 Quadrupolar nuclei


    3.5 Surface Area Measurements


    3.5.1 Gas Adsorption Isotherms


    3.5.2 Classification of Isotherms


    3.6 Thermal Analysis


    3.6.1 Thermogravimetric analysis (TGA)


    3.6.2 Differential Thermal Analysis (DTA)


    3.6.3 Differential Scanning Calorimetry (DSC)


    3.6.4 Temperature Programmed Reduction (TPR) & Temperature Programmed Desorption (TPD)


    Summary for chapters 2 and 3,


    Questions


    Chapter 4 Synthesis


     Elaine A. Moore and Lesley E. Smart


    4.1       Introduction


    4.2       High-Temperature Ceramic Methods


    4.2.1    Direct Heating of Solids


    4.2.2    Precursor Methods


    4.2.3    Sol?Gel Methods


    4.3.      High-Pressure Methods


    4.3.1.   Using High-Pressure Gases


    4.3.2.   Using Hydrostatic Pressures


    4.4.      Chemical Vapour Deposition


    4.4.1.   Preparation of Semiconductors


    4.4.2.   Diamond Films


    4.4.3    Optical Fibres


    4.5.      Preparing Single Crystals


    4.5.1    Epitaxy Methods


    4.5.2    Chemical Vapour Transport


    4.5.3.   Melt Methods


    4.5.4    Solution Methods


    4.6.      Intercalation


    4.7.      Green Chemistry


    4.7.1.   Mechanochemical Synthesis


    4.7.2.   Microwave Synthesis


    4.7.3.   Hydrothermal Methods


    4.7.4.   Ultrasound-assisted synthesis


    4.7.5 Biological-related methods


    4.7. 6. Barium Titanate


    4.8.      Choosing a Method


     


     


    Chapter 5 Solids:Bonding and Electronic Properties


    Elaine A. Moore and Neil Allan


    5.2. Bonding in Solids: Free electron theory


    5.2.1. Electronic conductivity


    5.1 Introduction


    5.3. Bonding in Solids: Molecular Orbital Theory


    5.3.1. Simple Metals


    5.3.2. Group 14 elements


    5.4. Semiconductors


    5.4.1. Photoconductivity


    5.4.2. Doped Semiconductors


    5.5. p-n junction and field effect transistors


    5.5.1. Flash Memory


    5.6. Bands in compounds: Gallium Arsenide


    5.7. Bands in d-block compounds: transition metal monoxides


    5.8. Superconductivity


    5.8.1. BCS Theory of superconductivity


    5.8.2. High temperature superconductors: cuprates


    5.8.3. Iron superconductors


    5.9. Summary


    Questions


    Chapter 6 Defects and Non-stoichiometry


    Elaine A. Moore and Lesley E. Smart


    6.1. Introduction


    6.2       Point Defects and Their Concentration


    6.2.1    Intrinsic Defects


    6.2.2    Concentration of Defects


    6.2.3    Extrinsic Defects


    6.2.4    Defect Nomenclature


    6.3       Nonstoichiometric Compounds


    6.3.1    Nonstoichiometry in Wüstite (FeO) and MO-Type Oxides


    6.3.2    Uranium Dioxide


    6.3.3    Titanium Monoxide Structure


    6.4       Extended Defects


    6.4.1    Crystallographic shear


    6.4.2    Planar Intergrowths


    6.4.3    Block Structures


    6.4.4    Pentagonal Columns


    6.4.5    Infinitely Adaptive Structures


    6.5       Properties of Nonstoichiometric Oxides


    6.5.1. Transition metal monoxides


    6.6       Summary


    Questions


     


    Chapter 7 Batteries and Fuel Cells


    Elaine A. Moore and Lesley E. Smart


    7.1. Introduction


    7.2. Ionic conductivity in solids


    7.3. Solid electrolytes


    7.3.1 Silver-ion conductors


    7.3.2. Lithium-ion conductors


    7.3.3. Sodium-ion conductors


    7.3.4. Oxide-ion conductors


    7.4. Lithium-based batteries


    7.5. Sodium-based batteries


    7.6. Fuel cells


    7.6.1. Solid oxide fuel cells


    7.6.2. Proton Exchange Membrane cells


    7.7. Summary


    Questions


    Chapter 8 Microporous and Mesoporous solids


     


    Jennifer E. Readman (and Lesley E. Smart ?)


    8.1. Introduction


    8.2 Silicates


    8.3. Zeolites


    8.3.1. Background


    8.3.2. Composition and Structure of Zeolites.


    8.3.3. Zeolite Nomenclature


    8.3.4. Si/Al ratios in Zeolites


    8.3.5. Exchangeable Cations


    8.3.6 Synthesis of Zeolites


    8.3.7. Uses of Zeolites


    8.4. Zeotypes


    8.4.1. Aluminophosphates


    8.4.2. Mixed Coordination Metallosilicates


    8.5. Metal-Organic Frameworks (MOFs)


    8.5.1. Composition and Structure of MOFs


    8.5.2. Example MOF Structures


    8.5.3.  Breathing MOFs


    8.5.4. Synthesis of MOFs


    8.5.5. Applications of MOFs


    8.6. Zeolite-like MOFs


    8.7. Covalent Organic Frameworks


    8.8. Mesoporous Silicas


    8.9. Clays


    Summary


    Questions


     


     


     


    Chapter Optical 9 and Thermal Properties of Solids


    Elaine A. Moore


    9.1 Introduction


    9.2. Interaction of Light with atoms


    9.2.1. Ruby Laser


    9.2.2. Phosphors for LEDs


    9.3. Colour Centres


    9.4. Absorption and Emission of Radiation in Continuous Solids


    9.4.1. Gallium Arsenide Laser


    9.4.2. Quantum Wells: Blue laser


    9.4.3. Light emitting diodes (LEDs)


    9.4.4. Photovoltaic (Solar) Cells


    9.5. Carbon-based conducting polymers


    9.5.1. Polyacetylene


    9.5.2. Bonding in Polyacetylene and related polymers


    9.5.3 Organic LEDs (QLEDs)


    9.6. Refraction


    9.6.1. Calcite


    9.6.2. Optical Fibres


    9.7. Photonic crystals


    9.8. Thermal properties of Materials


    9.8.1 Heat Capacity


    9.8.2. Thermal Energy Storage


    9.8.3. Thermal Expansion


    9.8.4. Thermal conductivity


    9.8.5 Thermal devices


    9.9 Summary


    Questions


    Chapter 10 Magnetic and Electrical Properties


    Elaine A. Moore


    10.1. Introduction


    10.2. Magnetic Susceptibility


    10.3. Paramagnetism in metal complexes


    10.4. Ferromagnetic Metals


    10.4.1. Magnetic Domains


    10.4.2 Permanent magnets


    10.4.3 Magnetic Shielding


    10.5. Ferromagnetic compounds: chromium dioxide


    10.6. Antiferromagnetism: transition metal monoxides


    10.7. Ferrimagnetism: ferrites


    10.7.1. Magnetic strips on swipe cards


    10.8. Spiral Magnetism


    10.9 Giant, Tunneling and colossal magnetoresistance


    10.9.1 Giant Magnetoresistance


    10.9.2. Tunneling Magnetoresistance


    10.9.3 Car steering angle sensors


    10.9.4 Colossal Magnetoresistance: manganites


    10.10 Magnetic properties of superconductors


    10.11 Electrical Polarisation


    10.12. Piezoelectric crystals A-Quartz


    10.13 Ferroelectric effect


    10.13.1. Capacitors


    10.14. Multiferroics


    10.14.1. Type 1 multiferroics:bismuth ferrite


    10.14.2. Type 2 multiferroics: terbium manganite


    10.15. Summary


    Questions


    Chapter 11 Nanostructures


    Elaine A. Moore and Lesley E. Smart


    11.1. Introduction


    11.2. Consequences of the nanoscale


    11.2.1. Nanoparticle morphology


    11.2.2. Mechanical Properties


    11.2.3 Melting temperature


    11.2.4. Electronic properties


    11.2.5. Optical Properties


    11.2.6 Magnetic Properties


    11.3. Nanostructural Carbon


    11.3.1. Carbon Black


    11.3.2. Graphene


    11.3.3. Graphene Oxide


    11.3.4. Buckminsterfullerene


    11.3.5. Carbon nanotubes


    11.4. Noncarbon nanostructures


    11.4.1 Fumed Silica


    11.4.2. Metal nanoparticles


    11.4.3. Non-carbon -ene structures


    11.4.4. Other non-carbon nanostructures


    11.5. Synthesis of nanostructures


    11.5.1 Top-down methods


    11.5.2. Bottom-up methods


    11.5.3 Synthesis using templates


    11.6. Nanostructures in health


    11.7. Safety


    11.8 Summary


    Questions


    Chapter 12 Sustainability


    Mary Anne White


    12.1. Introduction


    12.1.1 Definition of Materials Sustainability


    12.1.2 Sustainable Materials Chemistry Goals


    12.1.3 Materials Dependence in Society


    12.1.4 Elemental Abundances


    12.1.5 Solid State Chemistry?s Role in Sustainability


    12.1.6 Material Life Cycle


    12.2 Tools for Sustainable Approaches


     


    12.2.1 Green Chemistry


    12.2.2 Herfindahl-Hirschman Index (HHI)


    12.2.3 Embodied Energy


    12.2.4 Exergy


    12.2.5 Life Cycle Assessment


    12.3 Case Study: Sustainability of a Smartphone


    12.4 Theoretical Approaches


    12.5 Summary


    Questions

    More