
Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures
Series: KIAS Springer Series in Mathematics; 4;
- Publisher's listprice EUR 149.79
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 12 708 Ft off)
- Discounted price 50 833 Ft (48 412 Ft + 5% VAT)
63 540 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2024
- Publisher Springer
- Date of Publication 26 March 2025
- Number of Volumes 1 pieces, Book
- ISBN 9789819782482
- Binding Hardback
- No. of pages254 pages
- Size 235x155 mm
- Language English
- Illustrations 2 Illustrations, black & white 690
Categories
Short description:
Enumerative geometry is a core area of algebraic geometry that dates back to Apollonius in the second century BCE. It asks for the number of geometric figures with desired properties and has many applications from classical geometry to modern physics. Typically, an enumerative geometry problem is solved by first constructing the space of all geometric figures of fixed type, called the moduli space, and then finding the subspace of objects satisfying the desired properties. Unfortunately, many moduli spaces from nature are highly singular, and an intersection theory is difficult to make sense of. However, they come with deeper structures, such as perfect obstruction theories, which enable us to define nice subsets, called virtual fundamental classes. Now, enumerative numbers, called virtual invariants, are defined as integrals against the virtual fundamental classes.
Derived algebraic geometry is a relatively new area of algebraic geometry that is a natural generalization of Serre?s intersection theory in the 1950s and Grothendieck?s scheme theory in the 1960s. Many moduli spaces in enumerative geometry admit natural derived structures as well as shifted symplectic structures.
The book covers foundations on derived algebraic and symplectic geometry. Then, it covers foundations on virtual fundamental classes and moduli spaces from a classical algebraic geometry point of view. Finally, it fuses derived algebraic geometry with enumerative geometry and covers the cutting-edge research topics about Donaldson?Thomas invariants in dimensions three and four.
MoreLong description:
Enumerative geometry is a core area of algebraic geometry that dates back to Apollonius in the second century BCE. It asks for the number of geometric figures with desired properties and has many applications from classical geometry to modern physics. Typically, an enumerative geometry problem is solved by first constructing the space of all geometric figures of fixed type, called the moduli space, and then finding the subspace of objects satisfying the desired properties. Unfortunately, many moduli spaces from nature are highly singular, and an intersection theory is difficult to make sense of. However, they come with deeper structures, such as perfect obstruction theories, which enable us to define nice subsets, called virtual fundamental classes. Now, enumerative numbers, called virtual invariants, are defined as integrals against the virtual fundamental classes.
Derived algebraic geometry is a relatively new area of algebraic geometry that is a natural generalization of Serre?s intersection theory in the 1950s and Grothendieck?s scheme theory in the 1960s. Many moduli spaces in enumerative geometry admit natural derived structures as well as shifted symplectic structures.
The book covers foundations on derived algebraic and symplectic geometry. Then, it covers foundations on virtual fundamental classes and moduli spaces from a classical algebraic geometry point of view. Finally, it fuses derived algebraic geometry with enumerative geometry and covers the cutting-edge research topics about Donaldson?Thomas invariants in dimensions three and four.
MoreTable of Contents:
An Introduction to Derived Algebraic Geometry.- An Introduction to Shifted Symplectic Structures.- An Introduction to Virtual Cycles via Classical Algebraic Geometry.- An Introduction to Virtual Cycles via Derived Algebraic Geometry.- An Introduction to Cohomological Donaldson Thomas Theory.- Moduli Spaces of Sheaves: An Overview, Curves and Surfaces.- Sheaf Counting Theory in Dimension Three and Four.
More
Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures
Subcribe now and receive a favourable price.
Subscribe
63 540 HUF