
Künstliche Intelligenz in der Finanzwirtschaft
Daten, Methoden und Anwendungen
- Publisher's listprice EUR 64.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 2 205 Ft off)
- Discounted price 25 362 Ft (24 155 Ft + 5% VAT)
27 568 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1. Aufl. 2024
- Publisher Springer Gabler
- Date of Publication 21 August 2025
- Number of Volumes 1 pieces, Book
- ISBN 9783658417192
- Binding Paperback
- No. of pages500 pages
- Size 235x155 mm
- Language German
- Illustrations Etwa 500 S. 0
Categories
Short description:
Dieses Lehrbuch stellt die wesentlichen Methoden und Anwendungsgebiete der Künstlichen Intelligenz und der Analyse großer Datenmengen bei Finanzintermediären und Industrieunternehmen im Bereich der Finanzwirtschaft dar. Es vermittelt die Grundlagen und fortgeschrittene Methoden der KI und ihrer Anwendungen in der Finanzwirtschaft und unterstützt bei der Vorbereitung auf das Berufsleben im quantitativen Asset- und Risikomanagement. Das Buch kann begleitend zu universitären Lehrveranstaltungen im Bereich Financial Data Analytics, Risiko- und Investmentmanagement benutzt werden.
MoreLong description:
Dieses Lehrbuch stellt die wesentlichen Methoden und Anwendungsgebiete der Künstlichen Intelligenz und der Analyse großer Datenmengen bei Finanzintermediären und Industrieunternehmen im Bereich der Finanzwirtschaft dar. Es vermittelt die Grundlagen und fortgeschrittene Methoden der KI und ihrer Anwendungen in der Finanzwirtschaft und unterstützt bei der Vorbereitung auf das Berufsleben im quantitativen Asset- und Risikomanagement. Das Buch kann begleitend zu universitären Lehrveranstaltungen im Bereich Financial Data Analytics, Risiko- und Investmentmanagement benutzt werden.
MoreTable of Contents:
Datenarten, Datenquellen und Datenaufbereitung.- Klassische Regressionsverfahren.- LASSO, Ridge-Regression und Elastic-Net-Regularisierung.- Kreuzvalidierung.- K-Nächste-Nachbarn-Klassifikation, Support Vector Machines und ihre Anwendung im Kreditrisikomanagement.- Klassifikations-/Regressionsbäume und Anwendungen im Asset Pricing.- Künstliche Neuronale Netze, tiefes maschinelles Lernen und Mustererkennung in Finanzdaten.- Regulierung von KI in der Finanzwirtschaft.- Ethische Aspekte.
More