
Introductory Mathematics: Algebra and Analysis
Series: Springer Undergraduate Mathematics Series;
- Publisher's listprice EUR 37.44
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 3 176 Ft off)
- Discounted price 12 705 Ft (12 100 Ft + 5% VAT)
15 882 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1998
- Publisher Springer
- Date of Publication 14 January 1998
- Number of Volumes 1 pieces, Book
- ISBN 9783540761785
- Binding Paperback
- No. of pages215 pages
- Size 235x178 mm
- Weight 830 g
- Language English
- Illustrations 1 Illustrations, black & white 0
Categories
Short description:
This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.
MoreLong description:
Springer Book Archives
MoreTable of Contents:
1. Sets, Functions and Relations.- 1.1 Sets.- 1.2 Subsets.- 1.3 Well-known Sets.- 1.4 Rationals, Reals and Pictures.- 1.5 Set Operations.- 1.6 Sets of Sets.- 1.7 Paradox.- 1.8 Set-theoretic Constructions.- 1.9 Notation.- 1.10 Venn Diagrams.- 1.11 Quantifiers and Negation.- 1.12 Informal Description of Maps.- 1.13 Injective, Surjective and Bijective Maps.- 1.14 Composition of Maps.- 1.15 Graphs and Respectability Reclaimed.- 1.16 Characterizing Bijections.- 1.17 Sets of Maps.- 1.18 Relations.- 1.19 Intervals.- 2. Proof.- 2.1 Induction.- 2.2 Complete Induction.- 2.3 Counter-examples and Contradictions.- 2.4 Method of Descent.- 2.5 Style.- 2.6 Implication.- 2.7 Double Implication.- 2.8 The Master Plan.- 3. Complex Numbers and Related Functions.- 3.1 Motivation.- 3.2 Creating the Complex Numbers.- 3.3 A Geometric Interpretation.- 3.4 Sine, Cosine and Polar Form.- 3.5 e.- 3.6 Hyperbolic Sine and Hyperbolic Cosine.- 3.7 Integration Tricks.- 3.8 Extracting Roots and Raising to Powers.- 3.9 Logarithm.- 3.10 Power Series.- 4. Vectors and Matrices.- 4.1 Row Vectors.- 4.2 Higher Dimensions.- 4.3 Vector Laws.- 4.4 Lengths and Angles.- 4.5 Position Vectors.- 4.6 Matrix Operations.- 4.7 Laws of Matrix Algebra.- 4.8 Identity Matrices and Inverses.- 4.9 Determinants.- 4.10 Geometry of Determinants.- 4.11 Linear Independence.- 4.12 Vector Spaces.- 4.13 Transposition.- 5. Group Theory.- 5.1 Permutations.- 5.2 Inverse Permutations.- 5.3 The Algebra of Permutations.- 5.4 The Order of a Permutation.- 5.5 Permutation Groups.- 5.6 Abstract Groups.- 5.7 Subgroups.- 5.8 Cosets.- 5.9 Cyclic Groups.- 5.10 Isomorphism.- 5.11 Homomorphism.- 6. Sequences and Series.- 6.1 Denary and Decimal Sequences.- 6.2 The Real Numbers.- 6.3 Notation for Sequences.- 6.4 Limits of Sequences.- 6.5 The CompletenessAxiom.- 6.6 Limits of Sequences Revisited.- 6.7 Series.- 7. Mathematical Analysis.- 7.1 Continuity.- 7.2 Limits.- 8. Creating the Real Numbers.- 8.1 Dedekind?s Construction.- 8.2 Construction via Cauchy Sequences.- 8.3 A Sting in the Tail: p-adic numbers.- Further Reading.- Solutions.
More
Introductory Mathematics: Algebra and Analysis
Subcribe now and receive a favourable price.
Subscribe
15 882 HUF