• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • News

  • Finite-Dimensional Variational Inequalities and Complementarity Problems: Volume II

    Finite-Dimensional Variational Inequalities and Complementarity Problems by Facchinei, Francisco; Pang, Jong-Shi;

    Volume II

    Series: Springer Series in Operations Research and Financial Engineering;

      • GET 20% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 106.99
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        45 385 Ft (43 223 Ft + 5% VAT)
      • Discount 20% (cc. 9 077 Ft off)
      • Discounted price 36 307 Ft (34 578 Ft + 5% VAT)

    45 385 Ft

    db

    Availability

    Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
    Not in stock at Prospero.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Short description:

    This is part two of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It details algorithms for solving finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.

    More

    Long description:

    The ?nite-dimensional nonlinear complementarity problem (NCP) is a s- tem of ?nitely many nonlinear inequalities in ?nitely many nonnegative variables along with a special equation that expresses the complementary relationship between the variables and corresponding inequalities. This complementarity condition is the key feature distinguishing the NCP from a general inequality system, lies at the heart of all constrained optimi- tion problems in ?nite dimensions, provides a powerful framework for the modeling of equilibria of many kinds, and exhibits a natural link between smooth and nonsmooth mathematics. The ?nite-dimensional variational inequality (VI), which is a generalization of the NCP, provides a broad unifying setting for the study of optimization and equilibrium problems and serves as the main computational framework for the practical solution of a host of continuum problems in the mathematical sciences. The systematic study of the ?nite-dimensional NCP and VI began in the mid-1960s; in a span of four decades, the subject has developed into a very fruitful discipline in the ?eld of mathematical programming. The - velopments include a rich mathematical theory, a host of e?ective solution algorithms, a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics. As a result of their broad associations, the literature of the VI/CP has bene?ted from contributions made by mathematicians (pure, applied, and computational), computer scientists, engineers of many kinds (civil, ch- ical, electrical, mechanical, and systems), and economists of diverse exp- tise (agricultural, computational, energy, ?nancial, and spatial).

    More

    Table of Contents:

    Local Methods for Nonsmooth Equations.- Global Methods for Nonsmooth Equations.- Equation-Based Algorithms for CPs.- Algorithms for VIs.- Interior and Smoothing Methods.- Methods for Monotone Problems.

    More