
Differential and Difference Dimension Polynomials
Series: Mathematics and Its Applications; 461;
- Publisher's listprice EUR 106.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 3 631 Ft off)
- Discounted price 41 753 Ft (39 765 Ft + 5% VAT)
45 385 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number Softcover reprint of hardcover 1st ed. 1999
- Publisher Springer
- Date of Publication 6 December 2010
- Number of Volumes 1 pieces, Previously published in hardcover
- ISBN 9789048151417
- Binding Paperback
- No. of pages422 pages
- Size 235x155 mm
- Weight 676 g
- Language English
- Illustrations XIII, 422 p. Illustrations, black & white 0
Categories
Long description:
The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.
Springer Book Archives
Table of Contents:
I. Preliminaries.- II. Numerical Polynomials.- III. Basic Notion of Differential and Difference Algebra.- IV. Gröbner Bases.- V. Differential Dimension Polynomials.- VI. Dimension Polynomials in Difference and Difference-Differential Algebra.- VII. Some Application of Dimension Polynomials in Difference-Differential Algebra.- VIII. Dimension Polynomials of Filtered G-modules and Finitely Generated G-fields Extensions.- IX. Computation of Dimension Polynomials.- References.
More
Differential and Difference Dimension Polynomials
Subcribe now and receive a favourable price.
Subscribe
45 385 HUF