
Comparison Finsler Geometry
Series: Springer Monographs in Mathematics;
- Publisher's listprice EUR 149.79
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 12 708 Ft off)
- Discounted price 50 833 Ft (48 412 Ft + 5% VAT)
63 540 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2021
- Publisher Springer
- Date of Publication 10 October 2022
- Number of Volumes 1 pieces, Book
- ISBN 9783030806521
- Binding Paperback
- No. of pages316 pages
- Size 235x155 mm
- Weight 522 g
- Language English
- Illustrations 8 Illustrations, black & white 444
Categories
Short description:
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.
Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner?Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry?Ledoux?s Gaussian isoperimetric inequality, and functional inequalities inthe Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger?Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.
Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
MoreLong description:
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.
Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner?Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry?Ledoux?s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger?Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.
Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
?Finsler geometry is an active area of research in mathematics and has led to numerous real-world applications. This book is a comprehensive introduction to Finsler geometry and its applications. It covers the basic concepts of this geometry. More intuitively, this book provides an accessible introduction to recent developments in comparison geometry and geometric analysis on Finsler manifolds. ? this book offers a valuable perspective for those familiar with comparison geometry and geometric analysis.? (Behroz Bidabad, Mathematical Reviews, May, 2023) More
Table of Contents:
I Foundations of Finsler Geometry.- 1. Warm-up: Norms and inner products.- 2. Finsler manifolds.- 3. Properties of geodesics.- 4. Covariant derivatives.- 5. Curvature.- 6. Examples of Finsler manifolds.- 7. Variation formulas for arclength.- 8. Some comparison theorems.- II Geometry and analysis of weighted Ricci curvature.- 9. Weighted Ricci curvature.- 10. Examples of measured Finsler manifolds.- 11. The nonlinear Laplacian.- 12. The Bochner-Weitzenbock formula.- 13. Nonlinear heat flow.- 14. Gradient estimates.- 15. Bakry-Ledoux isoperimetric inequality.- 16. Functional inequalities.- III Further topics.- 17. Splitting theorems.- 18. Curvature-dimension condition.- 19. Needle decompositions.
More
Comparison Finsler Geometry
Subcribe now and receive a favourable price.
Subscribe
63 540 HUF