
An Introduction to Wavelets
Series: Wavelet Analysis and Its Applications; 1;
- Publisher's listprice EUR 89.95
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 7 631 Ft off)
- Discounted price 30 525 Ft (29 071 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
38 156 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Academic Press
- Date of Publication 11 February 1992
- ISBN 9780121745844
- Binding Hardback
- No. of pages266 pages
- Size 228x152 mm
- Weight 570 g
- Language English 0
Categories
Long description:
An Introduction to Wavelets is the first volume in a new series, WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory treatise on wavelet analysis, with an emphasis on spline wavelets and time-frequency analysis. Among the basic topics covered in this book are time-frequency localization, integral wavelet transforms, dyadic wavelets, frames, spline-wavelets, orthonormal wavelet bases, and wavelet packets. In addition, the author presents a unified treatment of nonorthogonal, semiorthogonal, and orthogonal wavelets. This monograph is self-contained, the only prerequisite being a basic knowledge of function theory and real analysis. It is suitable as a textbook for a beginning course on wavelet analysis and is directed toward both mathematicians and engineers who wish to learn about the subject. Specialists may use this volume as a valuable supplementary reading to the vast literature that has already emerged in this field.
MoreTable of Contents:
An Overview: From Fourier Analysis to Wavelet Analysis. The Integral Wavelet Transform and Time-Frequency Analysis. Inversion Formulas and Duals. Classification of Wavelets. Multiresolution Analysis, Splines, and Wavelets. Wavelet Decompositions and Reconstructions. Fourier Analysis: Fourier and Inverse Fourier Transforms. Continuous-Time Convolution and the Delta Function. Fourier Transform of Square-Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula. Wavelet Transforms and Time-Frequency Analysis: The Gabor Transform. Short-Time Fourier Transforms and the Uncertainty Principle. The Integral Wavelet Transform. Dyadic Wavelets and Inversions. Frames. Wavelet Series. Cardinal Spline Analysis: Cardinal Spline Spaces. B-Splines and Their Basic Properties. The Two-Scale Relation and an Interpolatory Graphical Display Algorithm. B-Net Representations and Computation of Cardinal Splines. Construction of Spline Approximation Formulas. Construction of Spline Interpolation Formulas. Scaling Functions and Wavelets: Multiresolution Analysis. Scaling Functions with Finite Two-Scale Relations. Direct-Sum Decompositions of L2(R). Wavelets and Their Duals. Linear-Phase Filtering. Compactly Supported Wavelets. Cardinal Spline-Wavelets: Interpolaratory Spline-Wavelets. Compactly Supported Spline-Wavelets. Computation of Cardinal Spline-Wavelets. Euler-Frobenius Polynomials. Error Analysis in Spline-Wavelet Decomposition. Total Positivity, Complete Oscillation, Zero-Crossings. Orthogonal Wavelets and Wavelet Packets: Examples of Orthogonal Wavelets. Identification of Orthogonal Two-Scale Symbols. Construction of Compactly Supported Orthogonal Wavelets. Orthogonal Wavelet Packets. Orthogonal Decomposition of Wavelet Series. Notes. References. Subject Index. Appendix.
More