
An Introduction to Materials Informatics
The Elements of Machine Learning
- Publisher's listprice EUR 106.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 3 631 Ft off)
- Discounted price 41 753 Ft (39 765 Ft + 5% VAT)
45 385 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2024
- Publisher Springer
- Date of Publication 28 February 2025
- Number of Volumes 1 pieces, Book
- ISBN 9789819979912
- Binding Hardback
- No. of pages479 pages
- Size 235x155 mm
- Language English
- Illustrations 11 Illustrations, black & white; 126 Illustrations, color 691
Categories
Short description:
This textbook educates current and future materials workers, engineers, and researchers on Materials Informatics. Volume I serves as an introduction, merging AI, ML, materials science, and engineering. It covers essential topics and algorithms in 11 chapters, including Linear Regression, Neural Networks, and more. Suitable for diverse fields like materials science, physics, and chemistry, it enables quick and easy learning of Materials Informatics for readers without prior AI and ML knowledge.
MoreLong description:
This textbook educates current and future materials workers, engineers, and researchers on Materials Informatics. Volume I serves as an introduction, merging AI, ML, materials science, and engineering. It covers essential topics and algorithms in 11 chapters, including Linear Regression, Neural Networks, and more. Suitable for diverse fields like materials science, physics, and chemistry, it enables quick and easy learning of Materials Informatics for readers without prior AI and ML knowledge.
MoreTable of Contents:
Introduction.- Linear Regression.- Linear Classification.- Support Vector Machine.- Decision Tree and K-Nearest-Neighbors (KNN).- Ensemble Learning.- Bayesian Theorem and Expectation-Maximization (EM) Algorithm.- Symbolic Regression.- Neural Networks.- Hidden Markov Chains.- Data Preprocessing and Feature Selection.- Interpretative SHAP Value and Partial Dependence Plot.
More