
Algorithmic Randomness and Complexity
Series: Theory and Applications of Computability; 0;
- Publisher's listprice EUR 149.79
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 12 708 Ft off)
- Discounted price 50 833 Ft (48 412 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
63 540 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2010
- Publisher Springer
- Date of Publication 5 November 2010
- Number of Volumes 1 pieces, Book
- ISBN 9780387955674
- Binding Hardback
- No. of pages855 pages
- Size 235x155 mm
- Weight 3090 g
- Language English
- Illustrations XXVIII, 855 p. Illustrations, black & white 0
Categories
Short description:
Intuitively, a sequence such as 101010101010101010? does not seem random, whereas 101101011101010100?, obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or to say that one real is more random than another? And what is the relationship between randomness and computational power. The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to address questions such as these. Much of this theory can be seen as exploring the relationships between three fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades, a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances. This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing context for its many concepts and theorems, discussing their significance, and highlighting their interactions. It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers and students in computability theory, algorithmic information theory, and theoretical computer science.
MoreLong description:
Intuitively, a sequence such as 101010101010101010? does not seem random, whereas 101101011101010100?, obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or to say that one real is more random than another? And what is the relationship between randomness and computational power. The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to address questions such as these. Much of this theory can be seen as exploring the relationships between three fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades, a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances. This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing context for its many concepts and theorems, discussing their significance, and highlighting their interactions. It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers and students in computability theory, algorithmic information theory, and theoretical computer science.
From the reviews:
?Develops the prerequisites to algorithmic randomness: computability theory and Kolmogorov complexity. ? Studying these ? one should be able to proceed in the area with confidence. A draft of the book under review has been circulating for years and the reviewer found it to be the best source when attempting to conduct research in the area ? . It is advantageous for the future of the area of algorithmic randomness that these two books were published at the cusp of a period of great activity.? (Bj?rn Kjos-Hanssen, Mathematical Reviews, Issue 2012 g)
?A thorough and systematic study of algorithmic randomness, this long-awaited work is an irreplaceable source of well-presented classic and new results for advanced undergraduate and graduate students, as well as researchers in the field and related areas. The book joins a select number of books in this category.? (Hector Zenil, ACM Computing Reviews, October, 2011)
MoreTable of Contents:
Background.- Preliminaries.- Computability Theory.- Kolmogorov Complexity of Finite Strings.- Relating Complexities.- Effective Reals.- Notions of Randomness.- Martin-Löf Randomness.- Other Notions of Algorithmic Randomness.- Algorithmic Randomness and Turing Reducibility.- Relative Randomness.- Measures of Relative Randomness.- Complexity and Relative Randomness for 1-Random Sets.- Randomness-Theoretic Weakness.- Lowness and Triviality for Other Randomness Notions.- Algorithmic Dimension.- Further Topics.- Strong Jump Traceability.- ? as an Operator.- Complexity of Computably Enumerable Sets.
More