• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Mobility Patterns, Big Data and Transport Analytics by Antoniou, Constantinos; Dimitriou, Loukas; Pereira, Francisco;

    Tools and Applications for Modeling

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 116.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        48 521 Ft (46 211 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 9 704 Ft off)
      • Kedvezményes ár 38 817 Ft (36 969 Ft + 5% áfa)

    48 521 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling, Second Edition provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing, and controlling mobility patterns-a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications, and concepts in mobility analysis and transportation systems. Fields covered are evolving rapidly, and this new edition updates existing material and provides new chapters that reflect recent developments in the field (such as the emergence of active, transfer and reinforcement learning).

    Users will find a detailed, mobility ‘structural’ analysis and a look at the extensive behavioral characteristics of transport, observability requirements, limitations for realistic transportation applications, and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data’s impact on mobility and an introduction to the tools necessary to apply new techniques.

    Több

    Tartalomjegyzék:

    1. Big data and transport analytics

    Part I
    2. Machine Learning Fundamentals
    3. Using Semantic Signatures for Social Sensing in Urban Environments
    4. Geographic Space as a Living Structure for Predicting Human Activities Using Big Data
    5. Data Preparation
    6. Data Science and Data Visualization
    7. Model-Based Machine Learning for Transportation
    8. Capturing Travel Behavior Patterns on the Anticipating Transportation Technologies and Services
    9. Reinforcement Learning for Transport Applications
    10. Foundational principles of learner representations

    Part II
    11. Statewide Comparison of Origin-Destination Matrices Between California Travel Model and Twitter
    12. Transit Data Analytics for Planning, Monitoring, Control, and Information
    13. A bridge between transit collective mobility patterns and fundamental economics
    14. Data-Driven Traffic Simulation Models: Mobility Patterns Using Machine Learning Techniques
    15. Big Data and Road Safety: A Comprehensive Review
    16. A Back-Engineering Approach to Explore Human Mobility Patterns Across Megacities Using Online Traffic Maps
    17. Pavement Patch Defects Detection and Classification Using Smartphones, Vibration Signals and Video Images
    18. Collaborative Positioning for Urban Intelligent Transportation Systems (ITS) and Personal Mobility (PM): Challenges and Perspectives
    19. Experiences with emerging data collection
    20. Machine Learning methods for processing time series count data in Transportation
    21. Analysing Travel Patterns on Data Collected by Bicycle Sharing Systems
    22. Optimal Pricing Schemes in the Maritime Market: Implementations by Deep RL
    23. Inequalities in mobility: Data-driven analysis of social equity issues in transport
    24. Conclusion

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Antoniou, Constantinos; Dimitriou, Loukas; Pereira, Francisco

    48 521 Ft

    38 817 Ft

    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Text as Data: A New Framework for Machine Learning and the Social Sciences

    Grimmer, Justin; Roberts, Margaret E.; Stewart, Brandon M.;

    42 042 Ft

    37 838 Ft

    20% %kedvezmény
    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Geometry of Integrable Systems: An Introduction

    Arsie, Alessandro; Mencattini, Igor

    28 841 Ft

    23 073 Ft

    20% %kedvezmény
    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Digital Media Practices in Households: Kinship through Data

    Hjorth, Larissa; Ohashi, Kana; Sinanan, Jolynna; Horst, Heather; Pink, Sarah;

    20 538 Ft

    16 430 Ft

    20% %kedvezmény
    Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Particle Physics: From the Basics to Modern Experiments

    Berger, Christoph; Herten, Gregor

    33 279 Ft

    26 623 Ft

    next