• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • The Finite Element Method for Boundary Value Problems: Mathematics and Computations

    The Finite Element Method for Boundary Value Problems by Surana, Karan S.; Reddy, J. N.;

    Mathematics and Computations

    Sorozatcím: Applied and Computational Mechanics;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 190.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        90 772 Ft (86 450 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 18 154 Ft off)
      • Kedvezményes ár 72 618 Ft (69 160 Ft + 5% áfa)

    90 772 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented studies of FEM. Mathematically rigorous, it uses examples, applications, and illustrations from various areas of engineering, applied mathematics, and the physical sciences. Readers are able to grasp the mathematical foundations of FEM, as well as its versatility; unlike many finite element texts this work is not limited to solid mechanics problems. Based around use of the finite element method for solving boundary values problems (BVPs), the text is organized around three categories of differential operators: self-adjoint, non-self adjoint, and non-linear. These operators are utilized with various methods of approximation, including the Galerkin, Petrov-Galerkin, and other methods.

    Több

    Hosszú leírás:

    Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.



    "This book is written by notable experts in the field, and its content has been verified and used in university courses for thirty years. It is self-contained, and it includes a balance of mathematical background/derivations and applications to general problems (rather than restriction to solid mechanics, for example), and this it will be of high interest to students in applied mathematics, applied physics, as well as all branches of engineering mechanics."


    --John D. Clayton, University of Maryland, College Park, USA

    Több

    Tartalomjegyzék:

    1 Introduction





      1. General Comments and Basic Philosophy



      2. Basic Concepts of the Finite Element Method



      3. Summary




    1. Concepts from Functional Analysis




      1. General Comments



      2. Sets, Spaces, Functions, Functions Spaces, and Operators



      3. Elements of Calculus of Variations



      4. Examples of Differential Operators and their Properties



      5. 2.5 Summary



    2. Classical Methods of Approximation




      1. Introduction



      2. Basic Steps in Classical Methods of Approximation based on Integral Forms



      3. Integral forms using the Fundamental Lemma of the Calculus of Variations



      4. Approximation Spaces for Various Methods of Approximation



      5. Integral Formulations of BVPs using the Classical Methods of Approximations



      6. Numerical Examples



      7. Summary



    3. The Finite Element Method




      1. Introduction



      2. Basic steps in the finite element method



      3. Summary



    4. Self-Adjoint Differential Operators




      1. Introduction



      2. One-dimensional BVPs in a single dependent variable


    5.3 Two-dimensional boundary value problems


    5.4 Three-dimensional boundary value problems


    5.5 Summary


    6 Non-Self-Adjoint Differential Operators


    6.1 Introduction


    6.2 1D convection-diffusion equation


    6.3 2D convection-diffusion equation


    6.4 Summary


    7 Non-Linear Differential Operators


    7.1 Introduction


    7.2 One dimensional Burgers equation


    7.3 Fully developed ow of Giesekus Fluid between parallel plates (polymer flow)


    7.4 2D steady-state Navier-Stokes equations


    7.5 2D compressible Newtonian fluid Flow


    7.6 Summary


    8 Basic Elements of Mapping and Interpolation Theory


    8.1 Mapping in one dimension


    8.2 Elements of interpolation theory over


    8.4 Local approximation over : quadrilateral elements


    8.5 2D p-version local approximations


    8.6 2D approximations for quadrilateral elements


    8.10 Serendipity family of interpolations


    8.11 Interpolation functions for 3D elements


    8.12 Summary


    9 Linear Elasticity using the Principle of Minimum Total Potential Energy


    9.1 Introduction


    9.2 New notation


    9.3 Approach


    9.4 Element equations


    9.5 Finite element formulation for 2D linear elasticity


    9.6 Summary


    10 Linear and Nonlinear Solid Mechanics using the Principle of Virtual Displacements


    10.1 Introduction


    10.2 Principle of virtual displacements


    10.3 Virtual work statements


    10.4 Solution method


    10.5 Finite element formulation for 2D solid continua


    10.6 Finite element formulation for 3D solid continua


    10.7 Axisymmetric solid finite elements


    10.8 Summary


    11 Additional Topics in Linear Structural Mechanics


    11.1 Introduction


    11.2 1D axial spar or rod element in R1 (1D space)


    11.3 1D axial spar or rod element in R2


    11.4 1D axial spar or rod element in R3 (3D space)


    11.5 The Euler-Bernoulli beam element


    11.6 Euler-Bernoulli frame elements in R2


    11.7 The Timoshenko beam elements


    11.8 Finite element formulations in R2 and R3


    11.9 Summary


    12 Convergence, Error Estimation, and Adaptivity


    12.1 Introduction


    12.2 h-, p-, k-versions of FEM and their convergence


    12.3 Convergence and convergence rate


    12.4 Error estimation and error computation


    12.5 A priori error estimation


    12.6 Model problems


    12.7 A posteriori error estimation and computation


    12.8 Adaptive processes in finite element computations


    12.9 Summary


    Appendix A: Numerical Integration using Gauss Quadrature


    A.1 Gauss quadrature in R1, R2 and R3


    A.2 Gauss quadrature over triangular domains



     

    Több