The Finite Element Method for Boundary Value Problems
Mathematics and Computations
Sorozatcím: Applied and Computational Mechanics;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 190.00
-
90 772 Ft (86 450 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 18 154 Ft off)
- Kedvezményes ár 72 618 Ft (69 160 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
90 772 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó CRC Press
- Megjelenés dátuma 2016. november 2.
- ISBN 9781498780506
- Kötéstípus Keménykötés
- Terjedelem824 oldal
- Méret 254x178 mm
- Súly 1496 g
- Nyelv angol
- Illusztrációk 250 Illustrations, black & white 0
Kategóriák
Rövid leírás:
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented studies of FEM. Mathematically rigorous, it uses examples, applications, and illustrations from various areas of engineering, applied mathematics, and the physical sciences. Readers are able to grasp the mathematical foundations of FEM, as well as its versatility; unlike many finite element texts this work is not limited to solid mechanics problems. Based around use of the finite element method for solving boundary values problems (BVPs), the text is organized around three categories of differential operators: self-adjoint, non-self adjoint, and non-linear. These operators are utilized with various methods of approximation, including the Galerkin, Petrov-Galerkin, and other methods.
TöbbHosszú leírás:
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.
"This book is written by notable experts in the field, and its content has been verified and used in university courses for thirty years. It is self-contained, and it includes a balance of mathematical background/derivations and applications to general problems (rather than restriction to solid mechanics, for example), and this it will be of high interest to students in applied mathematics, applied physics, as well as all branches of engineering mechanics."
--John D. Clayton, University of Maryland, College Park, USA
TöbbTartalomjegyzék:
1 Introduction
- General Comments and Basic Philosophy
- Basic Concepts of the Finite Element Method
- Summary
- Concepts from Functional Analysis
- General Comments
- Sets, Spaces, Functions, Functions Spaces, and Operators
- Elements of Calculus of Variations
- Examples of Differential Operators and their Properties
- 2.5 Summary
- Classical Methods of Approximation
- Introduction
- Basic Steps in Classical Methods of Approximation based on Integral Forms
- Integral forms using the Fundamental Lemma of the Calculus of Variations
- Approximation Spaces for Various Methods of Approximation
- Integral Formulations of BVPs using the Classical Methods of Approximations
- Numerical Examples
- Summary
- The Finite Element Method
- Introduction
- Basic steps in the finite element method
- Summary
- Self-Adjoint Differential Operators
- Introduction
- One-dimensional BVPs in a single dependent variable
5.3 Two-dimensional boundary value problems
5.4 Three-dimensional boundary value problems
5.5 Summary
6 Non-Self-Adjoint Differential Operators
6.1 Introduction
6.2 1D convection-diffusion equation
6.3 2D convection-diffusion equation
6.4 Summary
7 Non-Linear Differential Operators
7.1 Introduction
7.2 One dimensional Burgers equation
7.3 Fully developed ow of Giesekus Fluid between parallel plates (polymer flow)
7.4 2D steady-state Navier-Stokes equations
7.5 2D compressible Newtonian fluid Flow
7.6 Summary
8 Basic Elements of Mapping and Interpolation Theory
8.1 Mapping in one dimension
8.2 Elements of interpolation theory over
8.4 Local approximation over : quadrilateral elements
8.5 2D p-version local approximations
8.6 2D approximations for quadrilateral elements
8.10 Serendipity family of interpolations
8.11 Interpolation functions for 3D elements
8.12 Summary
9 Linear Elasticity using the Principle of Minimum Total Potential Energy
9.1 Introduction
9.2 New notation
9.3 Approach
9.4 Element equations
9.5 Finite element formulation for 2D linear elasticity
9.6 Summary
10 Linear and Nonlinear Solid Mechanics using the Principle of Virtual Displacements
10.1 Introduction
10.2 Principle of virtual displacements
10.3 Virtual work statements
10.4 Solution method
10.5 Finite element formulation for 2D solid continua
10.6 Finite element formulation for 3D solid continua
10.7 Axisymmetric solid finite elements
10.8 Summary
11 Additional Topics in Linear Structural Mechanics
11.1 Introduction
11.2 1D axial spar or rod element in R1 (1D space)
11.3 1D axial spar or rod element in R2
11.4 1D axial spar or rod element in R3 (3D space)
11.5 The Euler-Bernoulli beam element
11.6 Euler-Bernoulli frame elements in R2
11.7 The Timoshenko beam elements
11.8 Finite element formulations in R2 and R3
11.9 Summary
12 Convergence, Error Estimation, and Adaptivity
12.1 Introduction
12.2 h-, p-, k-versions of FEM and their convergence
12.3 Convergence and convergence rate
12.4 Error estimation and error computation
12.5 A priori error estimation
12.6 Model problems
12.7 A posteriori error estimation and computation
12.8 Adaptive processes in finite element computations
12.9 Summary
Appendix A: Numerical Integration using Gauss Quadrature
A.1 Gauss quadrature in R1, R2 and R3
A.2 Gauss quadrature over triangular domains
Több