Ethics and Fairness in Medical Imaging
Second International Workshop on Fairness of AI in Medical Imaging, FAIMI 2024, and Third International Workshop on Ethical and Philosophical Issues in Medical Imaging, EPIMI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6–10, 20
Sorozatcím: Lecture Notes in Computer Science; 15198;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 53.49
-
22 184 Ft (21 128 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 4 437 Ft off)
- Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
22 184 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2024
- Kiadó Springer Nature Switzerland
- Megjelenés dátuma 2024. október 13.
- Kötetek száma 1 pieces, Book
- ISBN 9783031727863
- Kötéstípus Puhakötés
- Terjedelem190 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk XVII, 190 p. 46 illus., 44 illus. in color. Illustrations, black & white 603
Kategóriák
Hosszú leírás:
"
This book constitutes the refereed proceedings of the Second International Workshop, FAIMI 2024, and the Third International Workshop, EPIMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, in October 2024.
The 17 full papers presented in this book were carefully reviewed and selected from 21 submissions.
FAIMI aimed to raise awareness about potential fairness issues in machine learning within the context of biomedical image analysis.
The instance of EPIMI concentrates on topics surrounding open science, taking a critical lens on the subject.
Tartalomjegyzék:
FAIMI: Slicing Through Bias: Explaining Performance Gaps in Medical Image Analysis using Slice Discovery Methods.- Dataset Distribution Impacts Model Fairness: Single vs Multi-Task Learning.- AI Fairness in Medical Imaging: Controlling for Disease Severity.- Fair and Private CT Contrast Agent Detection.- Mitigating Overdiagnosis Bias in CNN-Based Alzheimer’s Disease Diagnosis for the Elderly.- Fair AI Outcomes Without Sacrificing Group Gains .- All you need is a guiding hand: mitigating shortcut bias in deep learning models for medical imaging.- Exploring Fairness in State-of-the-Art Pulmonary Nodule Detection Algorithms.- Quantifying the Impact of Population Shift Across Age and Sex for Abdominal Organ Segmentation.- BMFT: Achieving Fairness via Bias-based Weight Masking Fine-tuning.- Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data.- Do sites benefit equally from distributed learning in medical image analysis.- Cycle-GANs generated difference maps to interpret race prediction from medical images.- On Biases in a UK Biobank-based Retinal Image Classification Model.- Investigating Gender Bias in Lymph-node Segmentation with Anatomical Priors.- EPIMI: Assessing the Impact of Sociotechnical Harms in AI-based Medical Image Analysis.- Practical and Ethical Considerations for Generative AI in Medical Imaging.
Több