• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Hypothesis Testing and Model Selection in the Social Sciences

    Hypothesis Testing and Model Selection in the Social Sciences by Weakliem, David L.;

    Sorozatcím: Methodology in the Social Sciences;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 56.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 226 Ft (25 930 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 445 Ft off)
      • Kedvezményes ár 21 781 Ft (20 744 Ft + 5% áfa)

    27 226 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples.

    Több

    Hosszú leírás:

    Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book&&&39;s examples.


    "Weakliem offers a principled discussion of statistical methods for model selection and demonstrates them on applied problems in the social sciences. This thoughtful work should influence both statistical theory and social science practice."--Andrew Gelman, PhD, Department of Statistics, Columbia University

    "One of the most difficult and complicated problems in any statistical analysis is model selection. In this comprehensive book, Weakliem provides a cogent and accessible presentation of existing thinking and methods. A &&&39;must read&&&39; for any sociologist who is a serious applied quantitative researcher."--Christopher Winship, PhD, Diker–Tishman Professor of Sociology, Harvard University

    "I especially appreciate this book&&&39;s careful treatment of the philosophical arguments underlying hypothesis testing and the historical approaches that have been taken to the model selection problem. The question addressed here is not &&&39;Which statistical test or approach should I use?&&&39; but rather, &&&39;How can model specification, estimation, and statistical estimation advance what is known about a particular problem?&&&39; The book makes a convincing case for the utility of both traditional and Bayesian approaches--instead of calling for a Bayesian revolution--and leads quite logically to a number of ways that conventional practice can be improved. Rich bibliographies at the end of each chapter provide sources for further reading."--Phillip K. Wood, PhD, Department of Psychological Sciences, University of Missouri
    -

    Több

    Tartalomjegyzék:

    1. Hypothesis Testing and Model Selection
    1.1. Introduction
    1.2. Standard Procedure of Hypothesis Testing
    1.3. Model Selection
    1.4. Purpose and Plan of the Book
    2. Hypothesis Testing: Criticisms and Alternatives
    2.1. Hypothesis Testing and Its Discontents
    2.2. Uses of Hypothesis Tests
    2.3. Criticisms of Conventional Hypothesis Testing
    2.4. Implications of the Criticisms
    2.5. Alternatives to Conventional Tests
    2.6. Examples
    2.7. Summary and Conclusions
    Recommended Reading
    3. The Classical Approach
    3.1. Random Sampling and Classical Tests
    3.2. Two Approaches to Hypothesis Tests
    3.3. Confidence Intervals
    3.4. Choosing a Significance Level
    3.5. Comparison to Conventional Practice
    3.6. Implications of Choosing an α-level
    3.7. Other Kinds of Errors
    3.8. Example of Choosing an α-level
    3.9. Evaluation of Criticisms
    3.10. Conclusions
    Recommended Reading
    4. Bayesian Hypothesis Tests
    4.1. Bayes&&&39;s Theorem
    4.2. Bayesian Estimation
    4.3. Bayes Factors
    4.4. Bayesian Confidence Intervals and Bayes Factors
    4.5. Approaches to Bayesian Hypothesis Testing
    4.6. The Unit Information Prior
    4.7. Limits on Bayes Factors
    4.8. Bayes Factors for Multiple Parameters
    4.9. Conclusions
    Recommended Reading
    5. The Akaike Information Criterion
    5.1. Information
    5.2. Prediction and Model Selection
    5.3. The AIC
    5.4. Consistency and Efficiency
    5.5. Cross-Validation and the AIC
    5.6. A Classical Perspective on the AIC
    5.7. A Bayesian Perspective on the AIC
    5.8. A General Class of Model Selection Criteria
    5.9. Summary and Conclusions
    Recommended Reading
    6. Three-Way Decisions
    6.1. Substantive and Statistical Hypotheses
    6.2. Bayes Factors for Directional Hypotheses
    6.3. Bayes Factors for Three-Way Decisions
    6.4. Summary and Conclusions
    Recommended Reading
    7. Model Selection
    7.1. Introduction
    7.2. Bayesian Model Selection
    7.3. The Value of Model Selection
    7.4. The Risks of Model Selection
    7.5. Examples of Model Selection
    7.6. Conclusions
    Recommended Reading
    8. Hypothesis Tests
    8.1. Hypothesis Tests and the Strength of Evidence
    8.2. When Should Hypotheses Be Tested?
    8.3. The Role of Hypothesis Tests
    8.4. Overfitting
    8.5. Hypothesis Tests and the Development of Theory
    8.6. Conclusions
    Recommended Reading
    References

    Több
    Mostanában megtekintett
    previous
    Hypothesis Testing and Model Selection in the Social Sciences

    Ibn Gabirol. El Pensamiento Judio Andalusi

    Pacheco Paniagua, Juan Antonio

    8 424 Ft

    7 750 Ft

    20% %kedvezmény
    Hypothesis Testing and Model Selection in the Social Sciences

    Trapping of Small Organisms Moving Randomly: Principles and Applications to Pest Monitoring and Management

    Miller, James R.; Adams, Christopher G.; Weston, Paul A.; Schenker, Jeffrey H.

    26 622 Ft

    21 298 Ft

    20% %kedvezmény
    Hypothesis Testing and Model Selection in the Social Sciences

    Pocket Guide to Radiology

    Pickuth, Dirk; Murchison, John T.

    24 403 Ft

    19 522 Ft

    20% %kedvezmény
    Hypothesis Testing and Model Selection in the Social Sciences

    What Radiology Residents Need to Know: Neuroradiology

    Vachha, Behroze A.; Moonis, Gul; Wintermark, Max; Massoud, Tarik F.

    24 403 Ft

    19 522 Ft

    20% %kedvezmény
    Hypothesis Testing and Model Selection in the Social Sciences

    Differential Diagnosis in Dermatology: Second Edition

    Helm, Klaus F; Marks, James G; Foulke, Galen T;

    66 885 Ft

    53 508 Ft

    next