Orbital Relative Motion and Terminal Rendezvous: Analytic and Numerical Methods for Spaceflight Guidance Applications

Orbital Relative Motion and Terminal Rendezvous

Analytic and Numerical Methods for Spaceflight Guidance Applications
 
Edition number: 1st ed. 2021
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 192.59
Estimated price in HUF:
79 472 HUF (75 687 HUF + 5% VAT)
Why estimated?
 
Your price:

73 114 (69 632 HUF + 5% VAT )
discount is: 8% (approx 6 358 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
 
 
 
Product details:

ISBN13:9783030646561
ISBN10:3030646564
Binding:Hardback
No. of pages:417 pages
Size:235x155 mm
Weight:816 g
Language:English
Illustrations: 52 Illustrations, black & white; 100 Illustrations, color
403
Category:
Short description:

This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion.

The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions.

The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case.

The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics, and students at the graduate level and above. 

Long description:
This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion.

The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions.

The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case.

The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics,and students at the graduate level and above. 

Table of Contents:

Chapter 1. The Second-Order Analytic Approximation to the Solution of the Euler-Hill Equations of Relative Motion.- Chapter 2. Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influence of the J2 and J3 Earth Zonal Harmonics, in Rotating and Inertial Cartesian Reference Frames.- Chapter 3. Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influence of the Luni-Solar Gravity, in Rotating and Inertial Cartesian Reference Frames.- Chapter 4. Effect of Luni-Solar Gravity Perturbations on a Near-Circular Orbit: Third-Body Orbit Eccentricity Considerations.- Chapter 5. Effect of Atmospheric Drag Perturbation on Circular Orbits: Atmosphere Rotation Considerations.- Chapter 6. Analytic Solution of Terminal Rendezvous in Near-Circular Orbit Around the Oblate Earth: The Computation of the Starting Guess for Iterations.- Chapter 7. Techniques of Accurate Analytic Terminal Rendezvous in Near-Circular Orbit.- Chapter 8. Coplanar Two-Impulse Rendezvous in General Elliptic Orbit with Drag.- Chapter 9. The Analysis of the Relative Motion in General Elliptic Orbit With Respect to a Dragging and Precessing Coordinate Frame.- Chapter 10. The Algorithm of the Two-Impulse Time-Fixed Noncoplanar Rendezvous with Drag and Oblateness Effects.- Chapter 11. The Analysis and Implementation of In-Plane Stationkeeping of Continuously Perturbed Walker Constellations.- Chapter 12. The Mathematical Models of the Jet Propulsion Laboratory (JPL) Artificial Satellite Analysis Program (ASAP)